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Abstract

A technique was developed for estimation of launch

vehicle performance parameters. This technique used an

inverse covariance or Bayes filter. Both a seven state and

an eight state dynamics model were implemented and their

performance investigated. Observations consisted of angular,

infrared measurements from two orbital sensors. The seven

state filter had 3 position, 3 velocity and an acceleration

component for its state vector. The acceleration state was

modelled as constant between measurement updates. After the

addition of a fading memory, the seven state filter showed

good performance in estimating a variable acceleration pro-

, file. The eight state filter had 3 states each for position

and velocity, and seventh and eighth states involving engine

exit velocity and propellant mass flow rate. Although the

eight state filter had a better model for the acceleration,

the filter proved to be unsuccessful in its estimation

attempts.
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I Introduction

The objective of this research was to develop space-

based procedvres to estimate performance parameters of

launch vehir",as. In the past, estimation techniques of

position, velocity and performance parameters of launch and

reentry vehicles have been developed using ground-based

tracking radars as the data source. The measurements avail-

abl. wc -Id inclade range, range rate, azimuth and elevation.

Hav'n' i space reconnaissance capability would allow

for a ii,- F arce of ob,ervation data. Angular observations

of azimuth and elevation from satellites with passive infrared

sEsors fall into this category. This information could be

used in conjunction with ground based data or give valuable

data which was unattainable before d-,±e to the lack of ground

based stations.

This paper addresses the development of an estimator

*, using these satellite observations as data. An inverse co-
* ,.

variance or Bayes filter was used in the development of the

estimator. Because no range measurements are available from

the IR sensors, there may be degradation in the observability

of the states. Of particular interest was the ability of the

filter to estimate the accelerations of a launch vehicle as

well as its position and velocity.

For the problem, both a seven-state and then an eight-

state filter model were evaluated for their performance capa-

bilities. Also, two satellite observers were used for data

in order to improve observability in the states.

--- ---- ----- --- . .* *
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Assumptions:

(1) The data satellites were assumed to be in geosynchronous

equatorial orbits.

(2) The accuracy of the infrared sensors was considered to

be the same for both elevation and azimuth angle determination.

(3) The acceleration of the launch vehicle was assumed to act

along the velocity vector.

(4) A spherical earth was assumed in the filter model.

Sequence of Presentation:

The derivation of the dynamics equations of the filter

are presented in Chapter II. Both seven-state and eight-state

models are given. Chapter III shows the development of the

observation relationships between the heat emitting ballistic

missile and the satellite-based infrared sensor. This is

l- followed by the filter development in Chapter IV. Included

in the discussion is the development of the filter equations

and the Bayes filter algorithm. The testing and results a..e

discussed in Chapter V. Finally, Chapter VI contains con-

clusions resulting from the development and presents recom-

mendations for further study.

E2
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II Problem Dynamics

In the development of dynamics of the filter, a seven

state model was used first. The states included three for

position, three for velocity and one for acceleration due to

thrust or drag. Later, an eight state model was implemented

to see if improved performance of the filter could be attained.

In this case the acceleration state is replaced by two states,

one for estimating the rocket engine's exit velocity and the

other for the rocket's relative mass flow rate. The discus-

sion that follows will first address the development of the

dynamics equations for the seven state model and will conclude

with the differences needed to implement the eight state model.

6< The Seven State Model

The equations of motion for the launch vehicle were

derived from the general two-body equation:

+ = (2-1)

where p is the gravitational parameter:

= GM (2-2)

A rectangular earth inertial coordinate frame was used, with

the z-direction being north. So F was defined by,

r=xi + y + zk (2-3)

A^ A

where i, j, and k are unit vectors along the x, y, and z

1, axes respectively. The acceleration was assumed to a!t along

3
. . . - *
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the velocity vector so:

a = a(2-4)

Adding this to the two body equation gave:

r - + a - - (2-5)
-= r-

For the seven-state model the state vector was defined

by:

x (2-6)

y

z

v y

v z

[a
. ",V

The system was nonlinear, so the state vector was propagated

in time by use of the differential equation:

._,d (t) - ( (t), t) (2-7)

where x is the state vector at time t and F is a vector of

nonlinear functions of the variables of which 5 is compr:.sedi and possibly of t as well.

The three position states are denoted by x, y, and z.,

The time rates of change of these states are given by ther

4



respective velocities:

x=v x  (2-7a)
Vx

y = v (2-7b)y

z = v (2-7c)

For the velocity states, the time rates of change were

derived by breaking up eq 2-5 into the respective i, j, and

k components.

- - x + a -(2-8a)

r IV!

v
V y + a_Y (2-8b).- y r- Y

* v
z r-z + a (2-8c)

r3 T

The seventh state, acceleration, was mc ielled as being

constant over the time intervals between data updates.

Ideally, this would give the model the ability to estimate

the deceleration of a reentry vehicle as well as acceleration

of a launch vehicle. So the rate of change of acceleration

was given ny:

= 0 (2-9)

Then forming R by use of eqns 2-7, 2-8, and 2-9, gave the F

__ vector as:

5
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." -- X V x

.. x (2-10)

~v
, -. y

z V
z

x 3"

r lvi

y r lV

z r IV1

a] 0 1

For the treatment of nonlinear systems, we assume the
availability of a nominal trajectory, R (t), with a given set

0

of initial conditions O(0). The true initial conditions

differ slightly from the assumed initial conditions by an

unknown amount, SK(t). Assume that the true dynamics solu-

tion can be represented by:

x(t) =o M Rt M xt (2-11)

Differentiation of eq 2-11 gives us:

0

which combining with eq (2-7) yields:

O(t) + Sx(t) = T(3o(t) + 6(t), t) (2-13)

By applying Taylor's theorem and expanding the right

side of eq 2-13 we can obtain:

rA 6
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- . x(t) + 3x(t) F (xo(t), t) A A(t) SR(t) + .O.T.

where A(t) is a matrix found by taking the partial derivatives

of the 7 vector with respect to the state variables, evaluated

at the nominal solution, io(t).

A(t) (2-15)

With the assumption that 63x is small, the nominal tra-

jectory satisfies the dynamics model:

X-o (t) (xo (t), t) (2-16)

Subtracting this from eq 2-14 and neglecting higher order

'" terms, we see that to first order, 63x(t) satisfies the time-

•varying linear differential equatin:

-x(t) = A(t) MEW (2-17)

The derivation of the A(t) matrix is given in Appendix A.

i. The system given by eq 2-17 is linear and time dependent.

f.Therefore, the variations in the state are propagated by the

state transition matrix, :

(t) ID _(t, to a -(to  (2-18)

0 F

The state transition matrix is obtained by the solution of:

A(t'to) I tt (2-19)

0 0

7
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with the initial conditions:

- _(to1 t o) = I (2-20)

where I is the identity matrix.

The Eight-State Model

For the derivation of the eight state model, thrust was

assumed to be constant for each stage of the launch vehicle.

The dynamics of the system remained basically the same with
..-..

only the 7 vector and A(t) matrix changing. With thrust

constant, the acceleration can be given by:

a = v (2-21)
e(m

0

where:

a = acceleration due to thrust

.14 = the propellant mass flow rate of the rocket engine

ro = the original mass of the launch vehicle (including

propellant)

t = time

By using eq (2-21) in this form, we would need three new

states-v e, m, and m 0 . However, by dividing the numerator

and denominator by mo, the acceleration becomes:

- ( -m r)m o

8
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where M is the relative mass flow rate. The two additional

states become ve and M. The state vector for the eight

state model is:

x (2-23)

y

z

v x

v
y

v

v
e

M

and the resulting F vector becomes:

x = F((t), t) = v (2-24)x

'A14 v
y

v
z

v
x + a-

r V

v

r

V
-- z + a-

r gv i

0

0

~. The changes in the A(t) matrix are given in Appendix A.

9
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,4" Both state models were investigated in the implementa-

tion of the estimator. Although not physically correct, the

seven-state model was attractive because of its general

nature. This would hopefully allow the filter to adapt to

sudden changes in acceleration, such as those experienced in

a rocket staging. However, with the acceleration assumed

constant, one would have to be careful on how many data points

were used in an update. If the change in acceleration was

great in a data span, this would make the filter's constant

acceleration approximation less valid. The eight state model

has a better physical representation of the acceleration state.

This should lend to batching a larger amount of data to get an

improved update. But, the ability of the filter to detect

staging may be degraded. The characteristics of each model

will be discussed in more detail later.

10,-:'- ,..



III Observation Relationships

Azimuth and Elevation Derivation

The derivation of the angular relationships for the

problem was obtained from Miller's presentation (Ref 6).

The following will basically follow his development of the

, observation angles.

The measurements from the observation satellite were the

two angles, azimuth and elevation, depicted in Figure 1.

These angular relationships were derived with the observer

and launch vehicle in the same rectangular coordinate frame.

Azimuth was the angle (clockwise direction being positive)

between a local vertical, z', and a local position vector,

-'. Elevation was the angle between the negative of the

position vector of the observer, -R, and the vector from the

observer to the target vehicle, j. Both angles were measured

in radians. The angular relationships were derived from the

equations

cos y - a•b (3-1)

sin Y = I " x (3-2)
INII I

Elevation is the angle between P and -R, so from Figure

A 2 and eq 3-1 we see:

SCos 7sL -r (3-3)

-_ I IsI • IrI I I IrI

• -. -. '. . . S . - . -° • * - o . S S . . . . S . o - , .
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4..r

R = position vector of observer

= position vector of launch vehicle

= position vector of launch vehicle relative to observer

'=position vector (in a plane orthogonal to R-) of launch
vehicle relative to 0'

el = elevation angle; the angle subtended by and -R

az =azimuth angle; the angle subtended by F' and the line
segment from 0' to z'

':4 " Figure i. Illustration of observation angles

!-"L--. --- ,;''---.-',- -..- .-.,-..-:..................................................................."-, ;- . -"-"- . , .-------

. . . . . . . . .'. .. . 4.4 . . .. . . . . . . . . . . .
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r F
0 IJI el

* .

= a unit vector normal to R and containing point P

I s = a unit vector along

Figure 2. Geometry for elevation derivation

From eq 3-3

I g] = Ii cos . (3-4)

Now introducing direction:

S = -s I cos , (3-5)

Using vector addition we get:

s+ t r (3-6)

and substituting into eq 3-5 gives:

] Cos -r +"(3-7)

__ By rearranging:

13
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t= r -1- cos (3-8)

and combining with the results of eq 3-3 we get:

r - -R I~i " r]:= - - (3-9)

From Figure 2 we see:

sin(el) : L (3-10)
ITI

and:

p r - R (3-11)

Now substituting eqs 3-9 and 3-11 into eq 3-10 we get:

sin(el) . (3-12)

I which gives us the relationship for the elevation angle as:

-Rr

el = sin -I  (3-13)

Azimuth was given as the angle between a local vertical

and a local position vector. So from Figure 3 and using

eq 3-1 we get:

14



.,

k

t= vector the same as in Figure 2; normal to R and
containing point P.

k= a unit vector in the z direction.

Figure 3. Geometry for azimuth derivation

cos(az) k__ ". k (3-14)

an sbsittig q -9inf R rt gves

cr -(Ra( -(r15

This gives us the relationship for the azimuth angle as:

az = cos 1-6

15
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From eq 3-15, the sign of the azimuth angle is not readily

discernable. So to determine the sign, we look at the z com-

ponent of the cross product of f x F. If the . component was

negative, then the azimuth was negative.

Observation Relation Derivation

The relationships of the angular measurements, azimuth

and elevation, are nonlinear functions of the state vector.

A set of discrete observations are related to the state vari-

ables by the general nonlinear relationship:

z(ti) = G(x(t i ),ti ) (3-17)

Evaluating the observation vector along the nominal trajectory,

R (t), at discrete times, ti, yields the nominal measurements:@0
'.-! ~~o (ti) =  (Xo (ti) t)(-8

Now the true observations satisfy the equation:

;-',"," : (ti) = E Go(ti) + 6x(t i ,ti  (3-19)I0
By expanding this equation in a Taylor's series about tne

nominal trajectory yields:

= G(Xo(ti),t i ) + 0 1 1 6tx(t i) + H.O.T.R t(t)
x(ti)

V' (3-20)

subtracting eq 3-18 from both sides of eq 3-20 and neglecting

higher order terms gives a relationship for the residuals of

16



the observations, F(ti)-the difference between the true and

the nominal observations:

F(ti  z (' i oti =-G x(ti) (3-21a)

r 1 1 0.1Xo(ti)
00

H _(xo (ti ),ti )6i(t i) (3-21b)

where H is the partial derivative matrix of the observation

vector with respect to the state vector evaluated at the

nominal trajectory.

To make the residual the difference at the epoch, t
0

instead of ti, the state transition matrix is once again used:

F, (t i ) - H (io(ti) ,ti) _(ti Ito ) aR ( t o )  (3-22a)

a T(ti)Sx(t0 ) (3-22b)

j" The elements of the H matrix are derived in Appendix B.

;V17
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IV Filter Development

This chapter shows the derivation of the equations for

the Bayes filter and the algorithm for implementation of the

filter.

The Bayes Filter

From Chapter II, the problem dynamics were given by the

vector equation:

, (2-7)

Also, it was shown that with the dynamics of the problem well

understood, deviations in the state could be expressed by:

S(t) = (t ,to) S(t 0 ) (2-18)

as long as the SR's were small.

In Chapter III, a relationship for the residual, r(ti) ,

was derived by finding the observation relation H(ti) and

using eq 2-18 and was given by:
i (ti)  H(ti)Wtit o ) 5x (to

F (t i

1(- Tli)Si(to) (3-22)

Due to corruptive noise in the ipeasurements, there is an

error in the residual approximation. This is shown as:

F(ti) = T(ti)6x(to) + d(ti) (4-1)

,S Define Qi as the observation covariance matrix, containing

information about the accuracy of the data. For this application

18



S" : .Qi is chosen as diagonal undec the conditions that the random

errors in azimuth and elevation are uncorrelated within a

given observation.

Now, using Gaussian error statistics, the probability

density function for the error vector is expressed as:

f 6i) = (27) N/2 11h (- J) (4-2)

where J = _-1

To mdximize the probability, the principle of maximum likeli-

hood is used. J, the weighted least squares cost function,

must be minimized in order that f be a maximum. J is of the

form:

_ J [(ti) -T(ti)6R(to)] ]Qil[r(t i) -T(t i)S(t o ) ] (4-3)

-o Since Q- is positive definite, the necessary and suffi-

. cient condition for minimizing J is:

,- -_ _ _ T(4-4)

00i - solving for 6x(to) yields (ref 5):

6 (tO ) = (T (t) TQ. T(t.)) T(ti) TQI(t i) (4-5)
0 - 1

With SR assumed as zero mean, the covariance associated

with 6i is:

T
P (to) = E(sx(to)'6x(to) ) (4-6)

19



where E is the expectation operator. Let W = (TTQT) T Q-

_. and substituting 6x" from eq 4-5 gives:

T

Pt) = E(W F r wT )  (4-7)
-x 0- -

and since W is deterministic:

P (tO) = W E(r FT) WT (4-8)

But the expected value of r - is defined as the c"variance

of the observations, Q. So eq 4-8 can be written as:

P(t o ) = WQWT (4-9)

Expanding and simplifying:

(t = (TQ -T) -TTQ-1Q[(TTQ-1T) -TTQ T

= (TTQ-lT)lTT (TTQ-I) T[ (TTQ-IT)r-l ]T

Px(to) = (TTQ-T)-l (4-10)
-x 0 - _

Equations 4-5 and 4-10 are used in basic least squares

estimation. A sequential manner of handling the data can be

used and this is the Bayes filter. This is done by combining
A_

an old estimate, R (t0), and its covariance, P(t) , with a

new batch of data F. (t o ) is treated as data, rather than

reprocessing all thve, old data that went into forming the

estimate. So, the observation relations for the new estimate

are:

= Ix (t) (4-11)
(t- 0t (4-12)

20
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K' The augmented matrices become

Tug I (4-13)

Q [(-) 0 (4-14)

raug = [J(4-15)

where Xo is the assumed nominal state.

With this, the new covariance is:

+ T -1 -1
, , .- -aug eaug Taug )

- (p- 1 (_) + TT -1 T.)-1 (4-16)
r-1-1--

". and the correction to the state vector is:

T -1 1 T -1
R - au - aug -aug Q-aug -aug

= ~ ~ -p - TQ 1 T)-1 (-i T -1Q~F*- 1- ) + _ Ti) _- ( -" Xo + Z_- _1 "

The algorithm below shows the step by step iterative

process used to converge upon a solution.

. -; The Bayes Filter Algorithm

1. Input

a. Estimate at epoch

-:.'-, I. (to
1.1



2. P (t

b. New Data

1. zi

2. Q

2. Using a nominal solucion Xo(to), integrate dynamics to

obtain:

a. x (ti)

b.

3. From each measurement calculate:

a. r = i - G(x (ti)Iti)
1 - 0 1 1

b. H.

4. Assemble vector/matrices necessary for filter equations

ri

r2 i2 i2 22

r = * , T= - , Q =

r T.

ri Qi

5. Compute update of covariance and state:
-l - T -1 -

a. P(+) = (P (t )+T Q T)
,, T -1

b. Sx = PC+) (p-it)(x(ti ) - Xo (ti)) + T Q r)

6. Update the nominal solution:

'" (ti) = xo(ti) + 6 x

7. Convergence check. If convergence criteria is met then:

a. x (ti) = Xo (ti)

22
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77, b. P(t i ) = P(+)

If not met, return to step 2 with newly computed x0 (to) and

repeat the process.

8. Propagate estimate and covariance to new epoch and begin

process over again. Continue until launch trajectory is

complete. The ccvariance is propagated by:
-~ +

P(ti + =+ lt)P(t i)(t i + ti )

The convergence criteria is based upon the true solution

being the result. Theoretically 6x will converge to zero.

However, in practice, it should be allowed to converge to

within the associated square root of the covariance for that

element, 7P i" The residuals, independently, should be of

order QTias they converge.

Although no estimator is completely self starting, the

Bayes filter can be started with only a guess for the nominal

state. This is reflected in the algorithm by initializing

the inverse of the covariance matrix, P-1 (to) as the null

matrix. This indicates that there is no a priori knowledge

of the system, which can certainly be the case when looking

at the launch data of a missile. In this case, the Bayes

filter reverts to a least squares filter and the first update

is accomplished looking only at the measurements.

23



V TestingL and Results

Setup of Observers

As mentioned before, two observers were used in the

problem, assumed to be in geosynchronous equatorial orbit.

This stereo view would, hopefully, prevent any problems in

observability that might arise using only one observer. These

problems could occur if launch was directly below the observer

or the launch vehicle was traveling away from the observer.

The second situation is displayed in Figure 4.

'CV

P r

R = observer position vector

= true target vehicle position vector

r1 -3 = alternate target vehicle position vectors

p = vector from observer to target vehicle

Figure 4. Measurement ambiguity with one observer

This shows that along certain trajectories there is very

little change in the azimuth and elevation measurements.

Therefore, not much information would be given to the filter

24
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regarding changes in the states, especially velocity and

acceleration.

The tracking sequences were initialized with the two

observers positioned 900 apart along the same orbit. One

was positioned on the -y axis and the other on the x axis as

shown in Figure 5. This caused no loss in generality since

the coordinate system chosen was arbitrary and the launch

vehicle was initialized from a point that was not on any of

the coordinate axes. During tracking, the observers pro-

gressed counterclockwise along their orbit.

Z

trajectory

< launch

Observehicle

.r

Oobserver 2

x2

Figure 5. Initial positions of target and observers
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Truth Model

The truth model generated the true azimuth and elevation

data at given times during the launch profile. This data was

generated using a computer program that propagated the states

of the launch vehicle using the two body equation of motion.

The position and velocity were propagated using the equations

previously developed in Chapter II, eqs 2-7 and 2-8. To model

the acceleration, it was assumed that the thrust was constant

for each stage. With this, the acceleration was given by eq

2-22. Then taking the time derivative gave:

V M2

2(I-Mt)

which was used in the truth model to propagate the accelera-

tion state.

The position states were then combined with the position

vectors of each observer at the respective times and substi-

tuted into eqs 3-13 and 3-16 for the angular measurements

required for the data.

Values for the thrust profile were derived from para-

meters of a Titan IIIB rocket (ref 8).

1st Stage Ve - 8243.2 ft/sec

Thrust - 464,900 lb

Propellant mass flow rate - 56.398 lb-sec/ft

Initial mass - 11,275 ib-sec2/ft

2nd Stage Ve - 10,220.3 ft/sec

Thrust - 102,300 lb

Propellant mass flow rate - 10.0095 lb-sec/ft.6
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Initial mass - 2735 lb-sec2/ft

3rd Stage Ve - 9402.4 ft/sec

Thrust - 16,000 lb

Propellant mass flow rate - 1.7017 lb-sec/ft

Initial mass - 455 lh-sec2/ft

Figure 6 shows the acceleration profile given by the truth

model.

0
0

E- .

0.0 2.0 4.,0 6.,0 8.*0 1'0.!0
.- ,;TIME (MINUTES)

'i] Figure 6. Truth model acceleration versus time

:+ Computer Program Development

~The first step in developing the computer program for

z$

t"'+the filter was verification of the partial matrices A andH

that were developed in Chapters IS and III. After setting

I - up the A matrix as given in Appendix A, the individual
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elements were verified by conducting a numerical check given

by:
Fi(x j + 6,t) - Fi(x,t)

A. _ (5-2)

where:

A.. = the element in the 'th row and -'th column

6 = a deviation on the order of 10- 5 or smaller

-i (x.,t) = the i component of Y, evaluated at x

Fi (xj + St) = the ith component of F, calculated when

S has been added to the jth state of

The check gives an approximation to the elements of A as a

result of small changes in the state vector, x. If the

matrix, A, derived numerically agrees with A evaluated at

the state, xE, this provides assurance that the partial deri-

vatives taken in deriving A are correct.

The H matrix was set up as given in Appendix B and was

* * verified in a similar manner to the A matrix. The verifica-

tion resulted from looking at the equation:

G(x i + 6,t) - G(x,t)
H (5-3)

where Hi  the i column of the H matrixK 6 = same as before

G(x, t) = the evaluation of G, at the state vector

G(xi + 6,t) = the evaluation of G with 6 added to the

ith state

After the partials in A and H were all shown as correct,

•~ W,.. a check on the D matrix was performed. Again a numerical

28
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,,- , check was used to see if 1 was propagated in time correctly.

The D matrix was propagated using eq 2-19:

_(t,t O) = A(t) $_(t,to) (2-19)

and the check was accomplished by using:

X(x (to) + 6 ,t) - X (t) ,t)= (5-4)
-54

where = the ith column of the _ matrix

= same as before

X((t o) ,t) = the state vector as a function of t and

initial conditions, x(to)

(xi(to + 6,t) = the state vector as a function of t

and initial conditions, x(to) with 6

added to t.. ith state

With the matrices checked out the next step was to set

up and check out the filter's ability to converge to a solu-

tion. This was done by setting up a least squares filter.

The least squares algorithm is essentially the same as the

Bayes, the basic difference being that least squares esti-

mation only minimizes the squares of the measurement residuals

and doesn't use information from previous state estimates. So,

the update equations for the covariance and state estimate were

given by:

p(+) = [TT (ti)Q.lT(ti)]-1 (5-5)

= P(+)T(ti)Qlg (ti) (5-6)
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Since the Bayes filter during initial update reverts to least

squares estimation, if no a priori information is known, this

was a good check to see if the Bayes filter would have any

problems with convergence to a solution at epoch.

The check was accomplished using simulated measurements

to a satellite in orbit, first with zero acceleration and

then with a constant acceleration. For ease of computation,

astrodynamic units from Bate, Mueller and White (ref 1:429)

were used in all test cases. Five measurements at 0.33 time

unit (approximately 266 second) intervals were used in the

filter update. Each measurement consisted of an elevation

and an azimuth from both observers. The least squares filter

was able to detect and correct perturbations in the first six

states on the unaccelerated trajectory as shown in Table 1.

With a constant acceleration of 1/6 g's, the filter was again

able to converge to the correct solution after perturbations

in all seven states. This is shown in Table 2.

In both cases, the least squares filter gave an estimate,

accurate to seven decimal places of the true solution, within

two iterations. Although, in each of the cases the accelera-

tion was constant, the results gave some optimism in that

the estimation problem using the infrared sensors may be

plausible. It should be noted that the time interval between

measurements was quite large. Time intervals of this magni-

tude are unacceptable for estimating acceleration during the

ascent stages of a missile launch. As mentioned before, a

large variation in the acceleration over a data span would

30
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Table 1. Good correction to first six states

FiteA Corrections ______Ii Xiitial from
iiil true 1st 2nd 3rd

1 1.0290466 .1E-4 -.118312E-4 .182258E-5 .4215E-11

2 .0005 .5E-3 -.495331E-3 -.468180E-5 .1958E-10

3 -.0006 -.6E-3 .598687E-3 .131304E-5 .7479E-10

4 -.0005 -.5E-3 .505352E-3 -.533652E-5 -.2134E-10

5 .9857 -.9E-4 .781742E-4 .122667E-4 -.5657E-10

6 .0005 .5E-3 -.497214E-3 -.2786351"j-501E-9

7 .0 .0 .164532E-4 .615- -74E10

Notes: Corrections based on 3 sets of 5 observations
Observations at 0.33 time unit (=266 sec)

OWN intervals
C . Unaccelerated traj ectory

Table 2. Good correction to all seven states

fitr A Corrections
- from

Xinitial true 1st 2nd 3rd

1 1. 290466 .1E-4 -.130934E-4 .308629E-5 -.9982E-11

2 .0005 .5E-3 -.485662E-3 -.143514E-4 .9722E-10

3 -.0006 -.6E-3 .596834E-3 .316469E-5 .8925E-9

4 -.0005 -.5E-3 .510810E-3 -.108001E-4 -.4067E-10

5 .9857 -.9E-4 .511362E-4 .393112E-4 -.3160E-9

6 .0005 .5E-3 -.494899E-3 -.509932E-5 -.1413E-8
7 .16665 -.167E-4 .685476E-4 -.519284E-4 .475)E-9

Notes: Corrections based on 3 sets of 5 observations
Observations at 0.33 time unit (=266 sec)
intervals
Trajectory acceleration constant 1/6 g
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make the constant acceleration approximation less valid.

Several data rates were investigated while checking out the

Bayes filter.

The Seven State Filter

Knowing that the matrices and all other subroutines were

performing correctly, the computer program was set up for the

Bayes algorithm given in Chapter IV. The program is presentedU in Appendix C.

The initial testing of the filter used perfect data at

one second intervals. Five sets of measurements were used

for each update. A constant thrust launch profile was simu-

lated to determine if the filter could follow a target vehicle

through an entire trajectory. With deviations in the initial

" 1 guess for the first and seventh states, the filter was able

to converge-to a correct solution within three iterations and

then estimate all the states to within six decimal places

throughout the launch.

The next test was to determine the filter's ability to

estimate a variable acceleration profile. Because of the

computer time necessary to run a full launch profile through

the estimator, only the first stage of the truth model was

used while testing at a one second data rate. The filter

was able to detect the changing acceleration and corrected

towards the true solution. However, the estimates started

to lag, as the filter started to progress along the trajectory.

The lag occurred in all the states but was especially notice-

able in acceleration. By the end of the profile the filter

32



was 2.3 g's less than that of the true acceleration. This

is shown in Figure 7.

- At first, it was thought there was an observability

problem in the filter. The covariance matrix varied by

twelve orders magnitude between the corresponding elements

for position and acceleration. However, the eigenvalues

of the covariance matrix were positive. This indicated that

the matrix was positive definite. After further investiga-

tion, it was found that velocity and acceleration elements

of the covariance had decreased by five and eight orders of

-magnitude respectively, during the run. So, as the covar-

*' iance steadily decreased towards zero, the filter put more

emphasis on the dynamics model and less on the data.

To correct this problem, a fading memory was added to

the filter in which elements of the covariance matrix are

deweighted to reflect decreased confidence in the seventh

state. This w accomplished by multiplying the inverse

covariance mat- _c, P-l(t-), by a scalar, $, just after pro-

pagation. 8 took on values between zero and one, depending

upon the amount of fading desired. If a value of one was

used, the filter retained its full expanding memory. No

memory was retained for a zero value and the filter would

revert back to a basic least squares estimator.

Incorporating the fading memory, the filter demonstrated

improved performance. After testing many values of 8, it was

found that as the memory of the filter was decreased the

estimation of the acceleration profile became better. In

33
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fact with 8 equal to zero, the filter gave a very good

estimation of the ac'7eleration profile as shown in Figure

8. However, the estimates of the position and velocity

were on the high side. A 8 of 0.01 gave the filter its

best performance using perfect data. Figure 9 shows the

filter's estimate cf acceleration using this $.

The filter had demonstrated the ability to follow an

increasing variable acceleration profile. The full launch

:; .profile was given to the filter next, to determine its

ability to follow a staging event. This time five measure-

ments of perfect data at five second intervals were used

for filter update. Again, sets of five were used for ease

of implementation and to limit computer time. It was found

that the filter had to have at least three measurements in

order to make all seven states observable. On the other

side, if large amounts of mep:,urements were used, the filter's

constant acceleration approximation would become less valid.

At first, it was thought that with the increased data

interval, observability in the filter might be decreased.

However the covariance matrix became better conditioned.

Instead of the twelve orders of magnitude found with the

'.... one second data, it was now only nine. The increase in time

between measurements made it easier for the filter to observe

changes in the states.

With deviations, in the initial estimate of the first

and seventh states, the filter demonstrated good performance

in recognizing the staging events and correcting back to the

35
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true solution. Again, with limited fading, the filter

lagged in its estimates, which is evidenced in Figure 10.

By experimentation, it was found that a 0 of 0.06 gave the
best performance for the five second measurement interval

(Figure ii). As the data span for an update was increased,

less fading was required to obtain the filter's optimum

performance. More emphasis had to be put on the dynamics

model as the constant acceleration approximation became less

valid.

An initial goal was to determine the filter's capabi-

lities using a ten second data rate. With this measurement

interval, three measurements were required for the update.

As before, a minimum of three was needed t, make all the

states observable. However, with more than a thirty second

data span, the change in acceleration became too great for

the filter to handle, and excessive corrections to the states

caused the filter to diverge. Figures 12, 13, and 14 show

the filter's estimates of the vehicle's acceleration profile

using various $'s. A 8 of 0.1 gave the best estimation of

the acceleration without significant degradation to the other

state estimates. Various initial estimates were also tried

in the filter. With poor estimates in all the states, the

filter diverged quickly. With perfect estimates in the posi-

tion states and degraded estimates in the other four states,

the filter was able to converge to a solution. This showed

favorable results, since a good initial guess in position of

a rocket launch would be achievable while velocity and accel-

eration are less well known.
a3 "i 38
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The filter had shown the ability to estimate the accel-

eration profile of a launch vehicle. However, this had been

done with the use of perfect data. The measurements were

assumed to be unbiased and uncorrelated in time. So zero-

mean white Gaussian noise was added to the measurement angles

to simulate imperfect data. The standard deviation (a) of

the noise was steadily increased to determine when the per-

formance of the filter became degraded. There was no serious

degradation in performance until a a of 1.0 x 106 radians.

This standard deviation equates to approximately 150 feet.

Figure 15 shows the filterb estimate initially dropped off

but then recovered. At launch with the vehicle moving slowly

off the pad, the error ellipsoids start to overlap as more

corruption is introduced into the measurements. The filter

. had trouble discerning changes in the states of the vehicle

at liftoff. As the vehicle moved faster, the filter was

better able to distinguish changes and correct back towards

the true solution.

Increasing 8 and expanding the filter's memory produced

increased performance as the noise was increased. With a 8

of 0.3, the filter was able to follow the vehicle's accelera-

tion profile up to a a of 1.0 x 10-  (Figure i6). No improve-

ment of performance was noted with further increases in 3.

V The highest noise level attained before filter convergence

could no longer be achieved was with a = 5.0 x 10 - (approx-

imately 6800 feet). Although no information is given about

the first stage (Figure 17), the second and third stage

44
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estimates give a good approximation of the actual accelera-

. o-tion profile. With an optimal smoother, these estimates

could possibly be made better. However, this was not inves-

tigated.

The Eight State Filter

By making the appropriate changes in the r and Gvectors

and the A and H matrices, the eight state filter was easily

implemented. The filter was initially given data with one

second between observations. Having a better model for

acceleration, it was thought that the eight state filter

could handle a greater amount of data for update. Data for

the entire first stage was batched to the-filter for a least

- ', squares estimate. .The filter diverged within three itera-

tions. Twenty measurements were tried with initial estimate

deviations in the seventh and eighth state. The filter was

*," able to converge to the correct solution in two iterations.

However, when the time interval between observations was

increased to ten seconds, the covariance became ill-condi-

tioned and the filter diverged within four iterations (Table

3). The eigenvalues of the covariance matrix had a spread

of 16 orders of magnitude. Several other numbers of measure,-

ments were tried with no improvement in the filter's observ-

ability. With no significant results obtained, the attention

of the study was directed towards the seven state filter.

Ideally, the performance parameters of a missile (M and

Ve) would be obtained directly with the eight state filter.

By running the seven state filter, the data for individual
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stages could be separated. Then the data could be run

separately in the eight state filter- to estimate the perfor-

zmance parameters of each stage. Estimates of position and

velocity at staging obtained from the seven state filter

could be used to start the eight state filter. With the

performance parameter estimates of each stage, the accelera-

tion profile could be computed and compared with the profile

z ,. obtained from the seven state filter and get a better estimate

However, the eight state model, as developed in the study,

did not produce the desired results.

Table 3. Demonstrated filter instability (8-state)
Filter Ax

frm-__ ^x Corrections-- from
SXinitial true 1st 2nd 3rd 4th

.1474736 0 .1089E-4 -.1777E-3 .8439E-2 -.1134E+13

2 -.8695592 -.001 .9290E-3 .8686E-4 .4222E-1 .6660E+13

3 .4731659 0 .4499E-4 -.4055E-4 .2317E-1 -.3636E+13

4 .0005689 0 .1001E-2 .3010E-2 -.4045E+0 .8746E+14

5 -.0033487 0 .5865E-2 -.6365E-2 .2344E+l -.5128E+15

6 .0018243 0 -.3203E-2 .3643E-2 -.1281E+l .2801E+15

7 .318 .0001 .3148E+0 .7562E+l -.1678E+4 .5034E+18

8 3.72 -.0002M .2930E+I -.1195E+2 .1969E+4 -.5950E+18

Notes: Correction based on 20 observations
Observations at 10 second intervals

*-
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VI Conclusions and Recommendations

In this study, an inverse covariance or Bayes filter

was developed to estimate the performance parameters of a

launch vehicle. Two orbital observers with assumed angles

only (IR) measurements were used for filter update. A seven

state dnd an eight state dynamics model were evaluated in the

filter.

The seven state filter modelled acceleration as constant

and lagged in its estimates of the launch profile. Addition

of a fading memory to the filter improved performancE signi-

ficantly. Although a Monte Carlo analysis was not performed,

due to initial problems encountered during the study, the

filter showed good performance while varying initial condi-

tions, data rates, trajectories and noise levels.''It achieved

a solution, estimating a launch profile with a ten second data

rate and a noise level of a = 5.0 x 10- 5 radians.hResults indicate that variable acceleration cannot be
estimated with an eight state filter with acceleration

modelled using engine exit velocity, launch vehicle mass and

propellant mass flow rate. The observability became worse

with a higher dimensioned state vector.

It is recommended that further study be directed towards

the seven state filter. Investigation into a fading memory

differential corrector might be warranted. Using residuel

monitoring for adaptive choice of B might provide a better

estimate during a staging event or just after lift-off. Also

an optimal smoother might be considered to provide a better

50



estimation profile using noisy data. Lastly, examination of

using alternative measurevments, such as range or range rate,

is also recommended.

Because of failure of the eight state filter, direct

estimation of the rocket engine performance parameters was

not possible. Knowing that:

ao0a(t) =(2-22)
1-M(t t 0)

where ao = V M (initial acceleration)
e

a two state filter could be derived with a and M as the

states. Acceleration estimates from seven state filter

would be used as the data to estimate the two states for

each rtage. With estimates of ao and M, Ve can be obtained

directly.
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Appendix A

Derivation of the A Matrix

The elements of the A matrix are found by taking the

gradient of the dynamics vector, F.

A =VF (A-1)

where the elements are given by

A F i (A-2)aii

ax.3

For the seven state filter:

ax1  ax1  a33 ax4  ax1  3x6  3x7

1. .1
ax

2

iTH

4
ax.

5, (A-3)
ax1

Dx 6
ax

1

ax 7  *' ac7

aL 1 x7
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Using the state equations in Chapter II, the nonzero elements

of A are:

A14 - 1 (A-4)

x

A2 5 = 1 (A-5)

az 1 (A-6)

Ax 1 + 3x 2 (A41 = -- = - 5 (5

AVx _1 xy (A-8)
A4 2 = y = r5

A." ... 7x _ 3jxzA A43- 3Z r 5  (A-9)

2-x v xa a

A v+a (A-I)
x Vxy

vVx Vx

A47 = a- v (A-11)
z v

AS1  - (A-14)

r
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,.- r a v 2 "'' "'c~
A = 2

y _ 311Jy52 , y _ T (A-15)

A + (A-15).

5-yA2 y r
vr

ay -I 3yz (A-16)

5373
aaz r

A = 54 vx  v (A-17)

x v

2
A y + (A-18)

55 a Vy Vy 3 a

S Y -- (A-19)
56 a-V

z  v

A5 .. = v (A-2 0)57, . Av

A6 1 = - r' (A-21)
r

A = r3pyz (A-22)
62 ay

2
" a~ z  _ __+ 3pz 2

A -+ 3 Pr (A-23)63 r5

av vvaz VxVz
A =- - - ~ -(A-24)U64 av x  v(2

9avz  VyVza

A65 (A-25)

65 3

A z z + a (A-26)66 a
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z V
A = -a v (A-27)67 3a v

where

r = x 2+z 2

• = /2+2 2

v=v+V +v

and other variables are given in Chapter II.

For the eight state filter, the A matrix is 8 x 8 with

six new non-zero terms:

Vxa
A va(A-28)47 vVe

A48 = eM +  (A-29)48 v a
A V a (A-30)

vza
A67 (A-32)

e

v 2t
A (A-33)68 v V
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Appendix B

Derivation of H Matrix

The elements of the H matrix are found by taking the

partial derivatives of elevation and azimuth with respect

to all elements of the state vector. For the seven state

filter, H is a 2 by 7 matrix given by:

3G el 9el 9el 9el 9el 3el 9el I

9G ax 7y 'z 9vx Vv a (B-i)

O _ az Daz 3az 3az 3az 9az 9az

Lx gy 9z 9vx 3Vy 3vz Da

Since G is only a function of the three position elements

of the state vector, the last four coiumuis of the matrix

are zero.

Partial derivatives of elevation:

el sin- (B-2)

:.-:d dud- du (B-3)

dx (sin-l u)

I.= 1x2 +y2+z 2  (B-4)

where x,y,z are position components for the target vehicle

= R +R +R(B5xy z

.'  "where Rx, Ry, Rz are position components of the observer.

57



-: -..' .*A7.

Using eqs (B-2) and (B-3):

r R) + I-R(r R)+
4: 3el d _ R,9R IR. R' (B-6)
i-x J7 ldx JF - KI L

:"' el IR J.R I -R r' T)-,r TI i- -+-
:.___7- 121- FJ~

.. > +I IF - KI (B-7)

I -R( R I

Similarly:

.. '.. A -- _ _ _ +
r R

( - I _, R _) + I T+ ILe I-I
___ __2 

(B-8)

6 r-r-____.+ rK ~ ~~ Paria deiaie of) azimuth

9zaz = cos -  L I (B-10)
-R(r -R

~RI -10L)+:-- QR F - . R) + rF
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- 1
d -l du(Cos u) 2- (B-I)

1-u

From eqs (B-10) and (B-I)

r k____U________I_1 (B-12)

L~L~

the numerator is:

-R (xRx+yRy+zRz)

2 2 2z
R +R +R

x y z

Let: DOT = XRx+YRv+ZRz

= 
2 2 2

RSQD Rx +RyRz

So the numerator can be written: z - Rz DOT

RSQD

(RDOT)2

u RSQD (B-13)( RDOT) 2 / y2 RDOT\ 2

XRSQD 2S + QD
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R DOT' R7 DOT ( DT~ 2du ( - -) * - X R
-x ( RSQD LX RSQD / +RQ

/2 RO'2-3/2RO R2) .(2) ( x - SDK K~RQD* RSQD)RQ

DOT -RXRY RXDOT J-RRZ
RSQD RSQD( '

( 2 .( Y .___ + 2)* zRQS/QDQD)

+ (-x~z)(B-14)

RDOT 2 RDOT 2 R DOT

so a-(Cos U) =-
dx

R,,DOT

1- ~~ZRSQD_____
RXDOT\ 2  RVDOT\ 2  RZDOT 2

2~~( XRSQ \QD D jRSQD

R DOT IRXDOT RYO ROT -R,
~xoD RSD RQD) - ARS-D RS

DOT ( ROT RXDO23/
[(x..QD + 2 R~SQD RSQD 3/

/~RxDO~l~ 2 ( RXRDT Z + RDO

X SDRSQD) RSQD(B5
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Similarly:

d (cos u)=-

DOTR 2 / DOT)2'DT
+Z RSQD kRQ

RSQD + -zZO

L (XRSQD ) RSQD

IR DOT_ _ R RDO R DOT R-
/ ~SQD ) SQD RSQD SQBSD 6)

2.

x 2 R O+(REU'SRSQD + R9Dz RSQD )

DO2+ ~~~O)+ ZDQT)2] 3/

-Sz

6 1 
)

1- 
SQ

Rx. 2.. . . . . . . . . . . . . . .. . . . . . . . . . . . .



"%."Z

r-.:

/ R 2 OT2 )

I, ____
x DXD: -RS (B- 17 )

--RSQD \RSQD RSQD

The sign of eqs B-15, B-16, and B-17 was determined by looking

V at the z component of the cross product R x r. If the z com-

ponent was negative the sign was negative.

For the eight state filter H became a 2 x 8 matrix with

the added elements being zero.

-r-
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Appendix C
; Bayes Filter (Seven State) Program

PROGPAM HAYE3(INPUTjCUTR~Urs'APE7)
EXTEPNAL F
R.EAL XRFEFC?),DELTAPHI(797),Y(56, ,TIMN9ELMAT#4ZMATELMA72,

+ AZMAt? ,TTOUT ,RELERRABSERRiWORK(127)IWORKc5)tGMATc2,1),
*G;'JAT2(2,I),XOBS(3),XDBS2(3),HMATc497),KMA-1(297),HMAT2(2-,,

+ 11(4,7) ,HT7AtS(7,#),QC494),QI']V(494) , l(4,?),PINV(7,7),DlsD2
+ DELX(7,1) 8(9)o3(c~WAE~GtZ*g~TA(9)
+ XN EW(7),H1GR(7,1l),R(4,1)XN~S(T)XDTFF(71)PMhNSI (7,7),p
+ S- (7,1) ,PX(7,1),PPLS(7,1) ,PP(7,7),P4JS(797) ,PIIT(797),

+H' QH(71,7) ,BETA (7,7) ,0MNSI1';(7 ,7) XPL T(122), YPLOT( 122)9
+ EAPEPEVTT(611),Xc611) ,YYC611),ZCSL1),VX(611) ,VY(611),

- .+ VZ(61I) ,A (611) ,EX2,EY2,EZ2,EVX2,E-VY2,2:-VZ2,EP2,Ev2,EA2,
4 F P PR MS V 9RMS A 9 WCFK 2 (7 ) 9PSI V( 7 97) tZ'7)
INT~EGER COUITT,LUMI ,JIDGTIER*rICOOEITERIrEP.2
01'MENSITO0 QVUG0),QZ(10),PV(28)PZ(2')tKAREA(25C),
+ IMEcj:16'),ELMAT(160g AZMAT(16a),E'LMAT2(1sAZMAT2(160)

PA RA IME T E CoUITT61)
* .**I,%ITIALIZE**,

XREF(2)=-,418275S6

XREF(3 ): .60624C&3499)Cz(C6235)/53*4
XREF(5410 A.

X~EFCVI3O*N(-53249395)*COS(0.60213359)/25936e24764
XqEF(6)=100*SIN(3 .6O2l33%=9)/25936.247Sq
XREF (7 )= 1 184

"IME(Mi)0.0
1TER=13

* .~ r CO~DE:1

EV=0.0
EA= .0
EP2=0.0
EV2=C*O
FA2=CeG
MEAYN=Ie

CALL RA,4:E T (77)
DO 2 1=1,7

DC 2 J=197

PIM I 1(1 wd) :.3ec

2 C~jNT.NUE
BETA(1,1)=0e1
BETA (2 ,2 )=0.1

__ BETA(3,3)=0*1
8ETA(4,4)=O*j
BETA(5,5 )0.1
BETA(GS, )=C*1
BE'A(7,7 )=0.1
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020 5 1=1,156
f( I ) = *0

5 CONTINULE
DO 1C 1=t94

00 10 J1, 4

10 CONTINUE
00 1.5 1=1,4

15 CONTINUE
* .. FILND Q I1%VISE..

CALL CH'JGVCQ,49Q'J)
C.ALL LI'4V2P(V4,0GZDGitDlD2,WKAREA,1IER)
CALL CH'iG(Q24*Q'NV)
G ... EAD TN DATA AND ADD NOISE...
00 2 - NUM=19COUNT
READ (r )IIE(U)vE1AT(U)9A A E A2(U)AAT N
ELMAT ( NJ N)=LMAT C NUM)GA USS CMEANS T 3)
AZ MAT ( NUM)=AZMAT C -UM) +GAUSS (MEAN ,SrO )
E LMA T 2C(NUM)EL MA T2 (N U.1) .G AUS S (ME ANv3 D)
AZMAT2 CJU!)=AZMAT2(NUM*)4GAUSS(MEANSTD)

20 CONTINUE
DC 200 1=1,610

200 CONTINUE'
PRINT*t' TIME0X

* .. C:MPUTE RESIDUALS AND H MATRICES...
22 DO 25 1=1,7

D,- 25 J=19 7

HT OH (I,1J)=C .0

PHI(IJ)0.0U
XIEU(I )=XREFCI)

2 5 CONTINUE
DO 27 1=1,7

27 C2NTI.NUE
Dil 50 NdJV:ITERI-ER!

TO UT="U MEflNU4)(C!*k- RELER 1.Cr-E-3 7
ABSER-=1.OE-07

C EQ _5 6II~rIFLAG=-:*
Of' 30 Z=1,7

D 3 C J=197

Y( :k7eJ)=PH'L(T*J)
32 CCNT: NUE

CALL ODE (FNEQNPYTTOUrRELERpABREtFLAGUJOCKI4eRK)
DO 35 I197

D22 35 J=19T
PHTCIJ)=Y (j*74J)
X'IEW(I )Y( )
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39 CON TIN~UE
*&*Z.~INC2 POSITION OF OBSERVERS AND CALCJLATE G MATRIX ANiD

FRESlDUAL--.
CALL EL'JAZ(TTME(rUMt XNEUGMATSMAT2,X)BSXOBS2)

* P(211)=AMAT(NUM)-GMATf(21 )

P (4,1 )=AZ'4AT2(%,UM)-GMAT2(291)
* ..o.FINO H MATRICES..*

CAL ~AN(XEi(),XNEW(2)tXNEW(3),K"BS(ItXOBSC2),XaBS(3),HMA'
CALL MATH(X,4EUWl),X.NlEiJ2),XfvEIJ(3),XD8S2(1) XOBS2(2),'(OBS2(3),

HMAT2)
DC, 4C J=197

HMAT(l9 J)=HMA 1(1 ,J)
HX!Ar(2,J)=HMAT1 C2tJ)
HHAT( 3#J.)=HMA-2(19,J)
1IMAT(efJ)=HMA'T2C29J)

4A CONT!NUE
oooMULTTPLY H BY PHI..
CALL MOPY(H',4AT94,79PHI 979H)

* ...F!*D H4 TRANSPOSE...
D0 45 I19,4

0O-1 45 Jl,

45 CONTTNUE
* .,*F:ND HTRANS*Q INVEr^SE*H...

CALL MMPYCQINV,494,H,7,Pl)
CALL MFPY(HTRANS97#4#Pl#7sTMAT)
03 55 I=197

D~ 53 J=1,7
HTQH(IyJ)=HTGH(t9gJ)+TMAT(IgJ)

55 CONTINUE
oo*.FIND H TRANSPCSE*Q I4VERSE*R
CALL 1! DY( QINV94 ,4tP# 1,81)
CALL MMPY(HriZAN,%3974#Bi,1B2)

HTOr,( I,ol)=HTQR CI,1)+B2(I .1)
63 CON4TINUE

-30 CONTIN'UE
DO 65 1=1,56

65 CNT1I

**-.FIND P PLUS...

DO2 13 J:l17
Pt l.V(I ,j)=PMNSI CI J)eHTQH(I ,j)

79 CONTINUE
CALL CH?4GVCPINV,79PV)
CALL LIMV2P(Pv,7,Pz,:oGrDlD2,WKAR7AIER)

Zl jCALL CHNGMf0Z,1,PPLS)
o ..CCMPUTE EIGENVALUES OF UPDATED COVARIANCE...
IF (K&EQ.1) THEN
DO 72 1=1,7
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00 72 J~17
PS IVC QJ)=PPL3 (T ,J)

72 CONTINUE
CALL EIGPS(PSXV,7,1O ,ZZsPV,7,UORK2,IER)
PRIN'*,' ETGFNVALUES
00 4CO 1=1,7

400 CONTINUE
END IF
9*o.CO)MPUTE UPDATE TO STATE VECTORsoo
0O 75 I197

XDIFF(I,1 )=XMNS (1)-XREF{ I)
75 C 0 %TlINU E

CALL tMfPYP SI,7,7.XDIFF91,ST'%)
DO -2s 1=1#7

PX( 191 )SriR (I v1)4tr Q:Z(I1)1
80 CONTINUE

CALL MNPY(PPLS,7,79PX,1,OELX)
DO ?5 I197

X;,EF( 1)=XEF( I)+OELXC I, )

TIF CK*EQ.1) -HE%~
PRINf*,'P(+)= 9
PRINT'C7C(1XElSob)/))VC(PPLSCI9J),J=I,7)':=l,7)

f, E\D TF
PRIN'(7 (lX9E15e6)) '(DELXC ,1l)vT:1,7)
PR 111T *, 1XREF= I

IF (K*EG*3) G0 TO 86
4*.*CHECK FOR CONVERIGENCE...
IF CABSCDELXCL,1))*G7oPPLSC1,1)) GO TO 22
IF CABS(DELXC2,i.))*GT*P0LSC292)) GO Tl 22
IF (ABS(DELX(3v1)).GT.PPLSC3v3)) GO TO 22
IF CABS%'0ELX(4q1))eGT.*PPLS(49M) GO TO 22
I'F CA8SCDELX(591))oGT.PPLSC595)) GO TO 22

N~ TF (ABSCDFLX(6,1)).GT.PPLSCE,6)) 93 TO0 22
IF (ABS(DELX(7,1))*GT*PPLSC7t7)) GO TO 22

A36 XPLOT(M)=CTI;.ME(TI -)*0 .G530986)*806.3113744
YPLOTC(M) XREF(7)
WRITE C7,11O)XPL%3T(M),?YPLOT(Md)

11.0 FORMAT(F8,4,2XtE15.1)
EX2C(XRE-FC1 )-X(l CODE) )**2

* ***CCMPUTE DEVIATIONS IN STATES FRO4 TIUTH MODELooo
EY2=(XPEFC2)-YY(ICODE) )**2r EZ2=(XFEF(3)-ZCICODE) )**2
EVX2C(XEF(.)-VX(CucDE))**2
EVY2:-CXREF(5)-VY (CICODE) ) **2
FVZ2=(XR EFC6)-VZ (CICtcDE) ) **2
EA=CXPEF C7)-ACIC2DE))**2
EP=EX2,EY2.EZ2
EV=EVX2.E VY2.EVZ2
EP2=FP24.ED
EV2=EV2. EV
EA2=EA2.FA
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~" ~' .. PRZJPAGA'E STATE AND COVARIANCE*.

TI =T T +
TOUT=T !ME TI)
FELEPR=1.0E-07
AB SERR =1 * E-07
NEQN=56
IFLAG=-l

DC 87 r=197
YCI )=XlE:F(t)

3C CGN T I IWE
CALL ODE (FNIQNY,~TroUiRaELERRABSE-PRIFLAG#W0RKIWORK)
D0 90 1=1,1

00D 9a J=197

XMNSC(I )=Y( I)
PHI (Itj)Y( I*7.J)
P4.T(JvI)=YCI*7+J)

90 CONTINUE
* ... FINDO P MIMUS AND P MINUS INVERSE...

CALL MMPY(PPLSP177PHIT979PP)
* CALL MFPY(PHlt7jp7*PPg7gPMNS)

CALL CHNIGV(PMNS,1,PV)
CALL Lt14V2F'(PV,7,PZIOGTOlD2,UKAREAIER)
CALL CHNJGM(PZ,7ioP.4NSlO)
090.MULTIPLY P MINUS INVERSE BY BETA...
CALL MMPYCPMSI,?,7BETA,7PMN--I)
PRITT'(' TI"E= 9gF7*50,YTTME(I)
PRINIIaWX MiP4US=

!TER=ITE-Pe1
IF (ITER.GE.COUt4T) THEN

G6 TO 100
EN~D lF
TTER2=1-ER2+l
IF (ITER2oGT*COUN~T) "HEN

17ER2 =COUNT
ICDE DEF 1

:47,DC 51156

95 CONTINUE
60 TO 22
00*.CCAPUTE PM"S ERRORS OF FILTER...

100) RMSP=SQRC.EP2/(M-1))
R MSV S QRr T(E V2/ (M- 1)
R M S=SQR T(EA2/ (M-1)

PQINTI(t RMS ERROR VELOCITY= ",lE15.9)*,RMSV
P R 1Nj( R MS E.R RCR A CCE LE RATI ON 'E13 t R MS A
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'SUBR.CUT'11E ?44PY(AIAtJA93,JBC)
* ..,,MATRIX MULTIPLICATION ROUTINE...

REAL A('AJA)98(JA 1 Jk),CCIAJB)

* DOUBLE PRECISION TD
DO 2G K=1,TA

00 20 J=1,JB
TD=0 * 00
D~3 10 I=19JA

13 TD=TD+A(Ktl)*8(19J)
20 C(KJ):TD

END

SUBRCUTINE F(TYYP)
oo..SETS UP STATES AND0 PHI MATRIX FOR I4TEGRA7ION...
9EAL Yc56),YP(56) ,PH: (7,7),FMAT(7,1),AMAT(7,1),PHrDO1 (7,7),T
CALL MATF(Y(l) ,Y(2)tY(3) ,Y(4) ,Y(5) ,Y(S ),Y(7)9 FM1Ar)
DO' 10 1=1.7

10 CONTINUE
* CALL TMArA(Y(1) ,Y(2),YC3) ,Y(4) Y(5 ),Y(5 ),YC7,AMAT)

Do 20 1=1,7
DC 2u' J=197

P41(IJ)=Y(I*74J)
20 CONTINUE

CALL MMPYCA1MAT97,7,PHI979PH'IDOT)
Do 30 j1=10

D 33 J1, 7
YP (I *7+J)=P HIDOT 19 J)

33 CONTINUE
ENJ 0

SUBR.CUTI.'iE MATFCXpYgZVXoVYtVZpAIFMAT)
* .. CCMPUTES F VECTOR

REAL FIiA T(7,1),XYZVXVYVZAVE,9,TR3
R3=(X**2 +y**2.Z**2)*SQ.RT(X**2*Y**2.7**2-)
FMAT(Itl):VX
FMAT(291)'iIY
FPAT(391)=VZ
FJ4AT(491 )=X/R3+A*VX/SQRT(VX**2.+VY**2+VZ,*2')
FMAT(5,1 )=Y/P3,A*VY/SQRT(VX**2+VY**2*VZ**2-)
FMATC(,,1)=-Z/R3+A*VZ/SQRTCVX**2VY*2.VZr*2l)
FMAT(791)=O.C
END
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SUBRCUTI,%E MATACXYZVXVYVZAAMAT)
* ... C*1PUTES A MArRIX...

PEAL XYZVXVYVzAR3,R5,V3,AMAT(7971), Vi

INTEGE I,
P3=(X**2-*Y**2*Z**2)*SQGR'r(X**2+Y**2.?hZ**)
R5=C(X**2.Y**2+Z**2)**2-) SQPT(X**2+Y**24+Z**2)
Vl=SGRT(VX**2.VY**2+VZ**2)
V3=iVX**2,VY**2+VZ**2)*SQRT( VX**2,VY.**2.VZ**2)
DO 1C 1=197

D"? 23 J=197
AMAT(IJ)=0 .0

2c ~C CNTI NUE
10 CONTIN~UE

AMAT(1,9 )=
AMAT (2,5 )1

*AMAT(491)= -11R3+3*X**21R5
*AIAAT(4,2)= 3*X*Y/R5

AMATC*,3)= 3*X*Z/R5
AMAT(4,.)= A/V1-VX**2*A/V3
A44AT (4,95) -VX*VY*A/V3
AIIAT(496) -VX*VZ*AIV3
AMAT(497)= VX/vl
AMATC591)= 3*X*Y/RS
AMAT(5,2)= -1/R3+3*Y**2/R5

@7AMAT(5,3= 3*Y*Z/p5
AMAT(5,q): -VX*VY*A/V3
AMAT(5,5)= A/V1-Vy**2*A/v3
AMATC5,6')= -VY*VZ*A/V3
AMAT(5,1)= VY/Vi
AMAT(6,1)= 3*X*Z/R5
AMAT(6,2)= 3*YirZ/R5
AP'AT(6,3)= -l/R3+3*Z**2/R5
AMAT(6,4)= -VX*VZ*A/V3
AMATCS,5)= -VY*VZ*A/V3
AIAT(6,S1)= A/Vi-VZ**2*A/V3
AMAT(6,7)= VZ/V1

SUBROUTIN~E MATG(XYZRSUBXRStJBYRSUBiaMAr,
*.v.CCMPUTES G MATRIX***
EAL XYZRSUBXRS.UBYRSU8ZELAZDIFFDOTRSQDNVUMNUM1,
+ CROSS sGMA7 (291)

FSGD=RSUBX*r2+RSUBY**2+RSUBZ**2
CROSS=RSUBX*Y-RSUBY*X

* DOT:X* PSUBX.Y*RSUBY.Z*PSU8Z
NUM=SQRr((-SB* /SG)*+YRUY*O/SD*ol

+ (Z-RSUliZ*DCT/RSQD)**2)
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D 'F=SQRT((XRSUBX)**2+(Y-RSUBY)**24e(Z-RSUBZ)**2)-

GIOATC1,J )=ASlrN(%UM/OIFF)
tUM=Z-RSUBZ*OOT/RSQD
GIAAT(2,1 )=AC0S(jUM1I 4JUM)
IF (CRCSS *LT. 0.0) -HEN
GMAT (2,I )1-G PAT(291)
END IF
EN~ D

SUBRCUTITNE MATH(XgYgZP.SUqSUxsuYRSUB3',0qAT)
* .*.COMiPUTES OBSERVATION R~ELATION MATRIX Ho..

PEAL HMATC(2v 7) ,X 9Y9Z #RSUB XvRSUBYiRSUBZ9 SQ,'iUMOFFvDOT
INTEGER 19J
DC- 10 112

DC 23 J=497
H4AT(IqJ)=3o0

20 CONTINUE
10 CONTINUE

RSQD=RSIJFX**2.?RSUBYf*2+RSUOZ**2
DOT=X*Q3UBXT*RSUBYZ*RSU3Z
14UMSQRT((-SB* l.3D*2(-RSB~DTRQ)*)'(-SB

+ *DOTIRSQD)**2)

CROSS=PStJBX*Y-RSUBY*X
HMA(1, )((NN)*(RUB-X)/DrFF**3e(X*(RSUBY**2,RSUR3Z**2)

+ kPSLBY**2/RSQD.Z* RSUBX*RSUBZ+DOT3R&SU8X*RSUBZ**2/RSQD) IDIFF

HMAT(192)=((C4UM)*(RSUBY-Y)/D7FF**3(Di2r*RSUB)C**2*RSUBY/RsQD
+ -X*RsUBX*RSUBY-DOT*RSUBYb(RSUBX**2.'+SUBZ**2)/RSQO
+ *Y*(aSUBX**2+RSUBZ**2>),DOT*RSUBY.P.SUBZ**2/RSQD
+ -Z*RSUBY*RSUBZ )/D:FF/NUM/RSD)/ST1(Ju1/DIFF)**2)
HMAI(1,3)=((UjUM)*(RSUBZ-Z)/D!FF**3,(OOT*RSUBX*&2*RSU5Z/PSQD

+ -:X*RSUBX*i'SUB+OT*PSUY**2*RSUBZ/RSOD-Y*RSUBY*RSUBZ
+ OOT*RSUBZ*(CRSUBX**24-RSUBY**2)/RSQDZ*(RSUBX**2+PSUBY**2)I

+ /DrFF/NUM/RsQD)/SQRT(1-(NIUP/DiFF )**2)
HMAT(2,1)= )SR(-(-SBZD~RG)N4*2

+ *(CX-.SUX*DOT/R'-QD)hC(RSUBY**2+SJ3Zb*2P)/R3QD)-(YRSUBY*DC'
+ /RSOO)*(RS UgX*RSUfiY/RSQD)-(Z-RSUBZa)OT/ISQD)
+ *(RSUBjX*RSUSZ/iRSQD))))
HMAT(292 )=(-1)/SGRT(l-((Z-PSUBZ*OIT(RSQD)/U4)**2)

+ *(( (-RSUBY*RSUBZ/RSQD)/NUM)-( (Z-RSUi3ZfrDOT/RSQD)/,4IAM**3
+ *((X-SB* TRQ)(-SB*RUYRQ)+YPUYDTRG)
+ C RS-UBX**2+RSUBZ**2)/RSQ00-Z-RSUBZ&DOT/RSQD)
+ *(RSUBY*RSU8ZIRS2D))))
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HMATC293 )C(-)/SQP(1-(ZRSaZ*CTP~SQ))/IJMh)g*2)

+ *(( X-RSUBX*DOIr/PSQD)*(-RSUBX*RSUBZ/RS§D?-.(Y-.RSUBY*D0T/RSQD)

+ *( SB*7BZRO)(ZRUZDO D* (C LSUBX**2.RSUBY**2)

F12 (COSoT *)HEN
HtmAT( 291 )=-MATr(2,1)
HMATC 292)=-IMA7 (2,2)
HMATC 2 3)=-HMA't 293)

E'%D F

* .~.SUBP&OUTlNE EL',4AZ(TIMEXRGMqATGMAT2 ,XO3S.KXi3S2)
oeo.CALCULATES OBSERVERS# POSITION F3R ; 4ATRIX COMPUTATTON.a*
PEAL TI MEXR(7) ,GMAT(2,),6GMAT2(2,1),K33S(3),X38S2(3)
XOBS(1)=6.6*COS( (2*3.141592654*I1ME)f106.53585)
XOBS(2)=6.6*'INc (2*3.141592654*rI1.E)f13m.53535)
X0BS(3)=l 3.0
XOBS2(1)=6.6*SI14c(2*3.141592654*r1IME)I/t5&.53595)
X08S2(2)=-6o6*COS 23l~5r64*IEtB~555
X0BS2(3) 0
CALL ?A"G(XR( ),XR(2),XR(3) ,XOBS(I ),XOa3S(2),XOBS(3),rMA T)
CALL MATG(XRC1 )9XR(2),oXR(3),XOBS2(1),X)E8s2(2) ,XOBS2(3) ,GMA?2)
EN4D

'SUBPOUTINE CHGV(AMATitJAVEC-)
e ..CHAP.-GES MATRIX INTO VECTCR FGRM 0OR I'%V:RSE ROUTINE.
7-EAL AMA T(NP?4),AVECTC(N*(N+1 )/2)
INTEGEP NJIICNT

*0 ICNT =

10 Do 10 J=191

T N=IN+
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SUBPOUTIrJE CHNGMcAN,.MAr)
* .**CHANGES VECTOP BACK INTO MATRIX AFTER3 INVERSIONe..

PEAL AC'lJ*(N+1)/2)NMAT(vi.?)
INTEGER N9ICNr9IqJ
ICNqT=O
Dc 10 I=19t,

A'. IC4T=ICNT+I
Dr 10 J=191

NMATCI ,J)=A(ICITJ-I)
NMAT(JI )=A(ICNTJ-I)

10 C 0NT!~U E
E%-D

REAL FU4eCTION GAUSS(MEA'JSTD)
aeo.RAN4DOM NOISE GENERArOR...
EAL MEAN

.UM=-6*
D~1=I1 12

1 SU M= SUM+R A NF(
G A U S S SDS U MEA N
END

0.'
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